Interconnectedness in the Corporate Bond Market

Celso Brunetti Matthew Carl Jacob Gerszten Chiara Scotti Chaehee Shin

University of Iceland

Reykjavik, May 7, 2025

The views expressed in this article are those of the authors and not necessarily of the Federal Reserve System.

Introduction ●○○○	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
Introd	uction						

Does interconnectedness improve market quality?

• Academic literature does not provide definitive answers

- Allen and Gale (2000): complete networks help mitigate effects of shocks
- Acemoglu et al. (2015): large shocks problematic for highly interconnected networks

Introduction 0000	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
Our A	pproach						

- Introduce a new financial network construct: the assets network
- Build the corporate bond network
 - Large and important market
 - High institutional ownership
- Study linkages between interconnectedness and market quality

 $\mathsf{YES} \Rightarrow \mathsf{Interconnectedness} \text{ improves market quality}$

Introduction ○●○○	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
Our A	pproach						

- Introduce a new financial network construct: the assets network
- Build the corporate bond network
 - Large and important market
 - High institutional ownership
- Study linkages between interconnectedness and market quality

 $\mathsf{YES} \Rightarrow \mathsf{Interconnectedness} \text{ improves market quality}$

Introduction ○○●○	Networks in Finance	Data	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
Contri	butions						

- We develop a novel measure of *asset-based* IC at bond issuer level, using granular insitutional holdings data
- We establish stylized facts about cross-sectional and time series evolution of IC in the corporate bond market
- We contribute to the understanding of the role of IC on corporate bond market functioning and its impact on financial stability
- We show the importance of IC for corporate bond pricing

Introduction ○○○●	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
Relate	d Literati	ire					

• Network literature

 Anton and Polk (2014), Diebold and Yilmaz (2014), Greenwood et al. (2015), Brunetti et al. (2019), etc.

• Growing literature in intermediary asset pricing

- He et al. (2017), Ben-David et al. (2021), Haddad & Muir (2021), Bretscher et al. (2022), Li & Yu (2022a, 2022b), etc.
- Literature on the role of interconnectedness
 - Allen & Gale (2000), Elliot et al. (2014, 2021), Acemoglu et al. (2015), Duarte & Eisenbach (2021), etc.

Three ways of building networks in finance

O Correlation: Billio et al. 2012; Diebold and Yilmaz 2014

Physical: Brunetti et al. 2019

• Overlapping portfolios: Caccioli et al. 2015

Conventional Approach on Defining IC

Literature has focused on **investors**, hence the network of investors based on "overlapping portfolios"

Our New Network of Assets

Our focus is on **assets**, hence the network based on "overlapping investors"

Assets networks allows to learn about shock propagation among assets

Introduction	Networks i 0000●00	n Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix
		_						

Measuring Asset-level IC

$$\mathsf{E} = \frac{\begin{vmatrix} I_1 & I_2 & \cdots & I_N \\ \hline A_1 & E_{11} & E_{12} & \cdots & E_{1N} & V_1^A \\ A_2 & E_{21} & E_{22} & \cdots & E_{2N} & V_2^A \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ A_S & E_{S1} & E_{S2} & \cdots & E_{SN} & V_S^A \\ \hline V_1^I & V_2^I & \cdots & V_N^I \end{vmatrix}$$
(1)

- A = A₁, A₂, ..., A_S financial assets, I = I₁, I₂, ..., I_N financial institutions, E_{ki} \$ amount invested by I_k in A_i
- Summing across columns = total amount of asset *i* held by system:

Network strength
$$\equiv V_i^A = \sum_{k=1}^N E_{ik}$$
 (2)

9/37

Introduction Networks in Finance Data Stylized Facts Empirical Analyses Endogeneity Conclusion Appendix 0000<000</td> 0000000 00000000 000000000 000000000 000000000 000000000

Measuring Asset-level IC (Cont'd)

- $\check{\mathsf{E}}$ is the corresponding adjacency matrix, where $\check{\mathsf{E}}_{ik} = 1$ if $\mathsf{E}_{ik} > d$ and zero otherwise.
- Summing across the columns = number of firms holding asset *i*:

Degree of asset
$$i \equiv D_i^A = \sum_{k=1}^N \overset{\circ}{E}_{ik}$$
 (4)

10 / 37

Measuring Asset-level IC (Cont'd)

We define the network of financial assets as $O^A = (A, P^A)$

$$A = \{A_{1}, A_{2}, ..., A_{S}\}$$
(5)
$$P_{i,j}^{A} = \frac{\sum_{k=1}^{N} \vec{E_{i,k}} \vec{E}_{j,k}}{\|\vec{E_{i,k}}\| \|\vec{E_{j,k}}\|},$$
(6)

where $\|\tilde{E}_i\|$ is the norm of the vector of investors holding asset *i* and $P_{i,j}^A$, the cosine similarity \Rightarrow the distance between two non-zero vectors of an inner-product space

$$IC_{i}^{A} = \frac{1}{N(S-1)} \sum_{j \in \{1, \dots, S\}: j \neq i} P_{i,j}^{A}.$$
 (7)

11 / 37

Introduction	Networks in Finance	Data ●00	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
Data							

- Thomson Reuters eMAXX: Comprehensive data on corporate bond holdings and characteristics
 - Individual institutional investor-bond-year-quarter
 - 1998:Q3-2021:Q3
 - U.S. domiciled institutional investors
- TRACE: Intraday trading data
- Other sources including
 - Total bond outstanding amuonts from Mergent FISD (Fixed Income Securities Database)
 - Supplementary ratings data from S&P Global
 - Firm-level COVID exposure measures made available by Hassan et al. (2023)

Introduction	Networks in Finance	Data ○●○	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
Samp	le Constru	ctic	on				

- Subset list of institutional investors to those whose corporate bond AUM is above median in the AUM distribution each quarter
 - Obtain 112 banks, 543 investment managers, 473 insurance companies, and 114 other types
 - This subset holds $\sim 80\%$ of total par amount of corporate bonds held on eMAXX
- Subset to bonds held by at least 10 institutional investors on average over panel
- Further aggregate bonds at the issuer-level

Introduction	Networks in Finance	Data ○○●	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
Summ	arv Statis	tics					

- About 200,000 bonds
- Average outstanding amount: \$2 billion
- Average remaining maturity: 8 years
- Average coupon rate: 6 percent
- Average rating: BBB
- Standard deviation: high for all variables

Network of Corporate Bonds

Figure: A snapshot of the network in 2021:Q3

Introduction	Networks in Finance	Data	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix
			00				

Cross-Sectional Observations

Average IC in corporate bonds is low but with great heterogeneity

Panel A: Cross-section of Corporate Bonds										
Variables	Ν	Mean	Med	Std.Dev.	Min	Max				
Cos. Sim.	7,350	0.034	0.033	0.015	0.0019	0.067				
Degree	7,350	44.37	32.78	40.46	1	294				
Strength	7,350	369,524	178,285	625,914	512	6,458,448				
Quarters	7,350	18.98	11	18.89	2	77				

The network changes over time with: IC increased after the $\ensuremath{\mathsf{GFC}}$

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses ●○○○	Endogeneity	Conclusion	Appendix 000000
OLS F	Regression	S					

$$Spread_{it} = \alpha + \beta IC_{it} + \gamma X_{it} + FE_i + FE_t + \epsilon_{it}$$
(8)

Illiquidity_{it} =
$$\alpha + \beta IC_{it} + \gamma X_{it} + FE_i + FE_t + \epsilon_{it}$$
 (9)

$$Volatility_{it} = \alpha + \beta IC_{it} + \gamma X_{it} + FE_i + FE_t + \epsilon_{it}$$
(10)

- X_{it} matrix of time-varying bond characteristics (trading volume, outstanding issuance size, coupon rate, credit rating, and time to maturity)
- *FE_i* issuer fixed effects
- *FE_t* time fixed effects (current year-quarter)

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
<u></u>							

OLS Regressions Results

	(1) Spread	(2) Amihud illiquidity	(3) IQR of traded prices	(4) Realized volatility
IC	-0.449***	-0.152***	-0.114***	-0.066***
	(0.062)	(0.018)	(0.015)	(0.016)
Rating	-2.431***	-0.205***	-0.317***	-0.373***
	(0.143)	(0.021)	(0.022)	(0.031)
Coupon	0.376***	-0.132***	-0.107***	-0.078***
	(0.054)	(0.016)	(0.013)	(0.015)
Time to mat.	-0.021**	0.016***	0.019**	0.018***
	(0.010)	(0.005)	(0.008)	(0.005)
Amount	0.295***	0.325***	0.222***	0.020
	(0.056)	(0.023)	(0.019)	(0.013)
Volume	-0.264***	-0.464***	-0.281***	
	(0.025)	(0.019)	(0.016)	
FE	lssuer, time	lssuer, time	lssuer, time	lssuer, time
Observations	182,607	182,607	182,607	182,607
R-squared	0.702	0.468	0.439	0.464

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses ○○●○	Endogeneity	Conclusion	Appendix 000000
Quant	ile Regres	sior	າຣ				

- Regression curve gives summary for *averages* of distributions corresponding to x's
- But measures of conditional central tendency do not always adequately characterize a statistical relationship among variables
- We are interested in estimating the conditional quantiles of a spread/illiquidity/volatility whose conditional distribution depends on IC and a vector of covariates

Results from Quantile Regressions

 Introduction
 Networks in Finance
 Data
 Stylized Facts
 Empirical Analyses
 Endogeneity
 Conclusion
 Appendix

 0000
 0000000
 000
 000
 000
 000
 000
 0000000
 000
 0000000
 000
 0000000
 000
 0000000
 000
 0000000
 000
 0000000
 000
 00000000
 000
 0000000
 000
 0000000
 000
 0000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 00000000
 000
 0000000
 00000000
 000
 0000000
 000
 0000000
 000
 0000000
 000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 00000000
 000000000
 0

Corporate Bond Characteristics by Interconnectedness Decile

IC decile	Rating	Coupon rate	Time-to-maturity	Amount (\$bil)	Volume (\$bil)
1	10.92	7.24	109.54	0.27	81.53
2	10.41	7.45	149.16	0.31	95.76
3	10.74	7.22	82.83	0.45	105.99
4	10.97	6.81	188.91	0.51	109.07
5	10.75	6.75	124.82	0.65	106.14
6	11.13	6.36	91.24	0.80	104.63
7	11.39	6.02	173.37	1.16	105.69
8	11.93	5.70	106.88	2.21	109.49
9	11.96	5.41	41.75	3.26	136.11
10	11.41	4.93	41.85	3.97	162.64

Credit rating, the most important determinant of bond investment, does not entirely predict bond's placement in the structure

 COVID-19 shock ⇒ exogenous bifurcation of firms (Hassad et al. 2023): distinguish between COVID-exposed and COVID-unexposed firms

• Textual analysis of earnings call transcripts used to determine COVID-exposed and COVID-unexposed firms

• Was the effect of COVID on COVID-exposed bonds mitigated by the IC to unexposed bonds?

Event Study: COVID Shock

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000		
Covid-	Covid-Exposed Bonds								

$$Spread_{i,t}^{exposed} = \alpha + \beta_1 I C_{i,t-1}^{unexposed} + \gamma' X_{i,t} + FE_i + FE_t + \epsilon_{i,t}$$

Illiquidity_{*i*,t}^{exposed} =
$$\alpha + \beta_1 IC_{i,t-1}^{unexposed} + \gamma' X_{i,t} + FE_i + FE_t + \epsilon_{i < t}$$

$$Volatility_{i,t}^{exposed} = \alpha + \beta IC_{i,t-1}^{unexposed} + \gamma' X_{i,t} + FE_i + FE_t + \epsilon_{i,t},$$

Introduction	Networks in Finance	Data	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix
					000000000		

Covid-Exposed Bonds

.

t = 2020:Q1, t-1 = 2019:Q4	Spread _t	Amihud illiquidity _t	IQR of traded prices _t	Realized volatility _t
$IC_{e \rightarrow U, t-1}$	-0.754***	-0.394***	-0.293***	0.00565
	(0.213)	(0.0804)	(0.0731)	(0.0907)
$Rating_{t-1}$	-1.743***	-0.350***	-0.340***	-0.305***
	(0.154)	(0.0580)	(0.0527)	(0.0628)
Coupon rate _{t-1}	0.285*	-0.158***	-0.0223	0.159**
	(0.159)	(0.0598)	(0.0544)	(0.0670)
Time to maturity $_{t-1}$	0.285**	0.150***	0.192***	0.338***
	(0.132)	(0.0498)	(0.0452)	(0.0551)
$Size_{t-1}$	0.508**	0.643***	0.428***	0.0532
	(0.249)	(0.0941)	(0.0855)	(0.0884)
Trade volume _{t-1}	-0.0528	-0.784***	-0.300***	
	(0.186)	(0.0704)	(0.0640)	
FE	lssuer, time	Issuer, time	lssuer, time	lssuer, time
Obs.	278	278	278	278
R^2	0.451	0.385	0.204	0.207

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000
Covid-	Unexposed	Bor	nds				

$$Spread_{i,t}^{unexposed} = \alpha + \beta_1 IC_{i,t-1}^{exposed} + \gamma X_{i,t} + FE_i + FE_t + \epsilon_{i,t}$$

$$III iquidity_{i,t}^{unexposed} = \alpha + \beta_1 IC_{i,t-1}^{exposed} + \gamma X_{i,t} + FE_i + FE_t + \epsilon_{i,t}$$

$$Volatility_{i,t}^{unexposed} = \alpha + \beta IC_{i,t-1}^{exposed} + \gamma X_{i,t} + FE_i + FE_t + \epsilon_{i,t}$$

Introduction	Networks in Finance	Data	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix
					0000000000		

Covid-Unexposed Bonds

.

t = 2020:Q1, t-1 = 2019:Q4	Spread _t	Amihud illiquidity _t	IQR of traded prices _t	Realized volatility _t
$IC_{u \to \mathcal{E}, t-1}$	-0.140	-0.119	-0.0517	0.243***
	(0.105)	(0.0829)	(0.0694)	(0.0869)
$Rating_{t-1}$	-0.890***	-0.289***	-0.192***	-0.240***
	(0.0781)	(0.0618)	(0.0518)	(0.0641)
Coupon rate _{t-1}	0.608***	-0.0217	0.0241	0.266***
	(0.0822)	(0.0651)	(0.0545)	(0.0686)
Time to maturity $_{t-1}$	0.0840	0.0382	0.0192	0.138***
	(0.0563)	(0.0446)	(0.0373)	(0.0468)
$Size_{t-1}$	0.137	0.535***	0.105	0.0198
	(0.102)	(0.0809)	(0.0677)	(0.0754)
Trade volume _{t-1}	0.00130	-0.713***	-0.187***	
	(0.0778)	(0.0616)	(0.0516)	
FE	lssuer, time	Issuer, time	lssuer, time	Issuer, time
Obs.	322	322	322	322
R^2	0.594	0.336	0.115	0.196

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity 0000000●0	Conclusion	Appendix 000000
Fallen	Angels						

- Fallen angels: From BBB to high-yield
 - spreads widen, liquidity drops and volatility increases
 - higher capital requirements
- Consider all BBB bonds
- Assumption: fallen angel downgrades plausibly exogenous within a narrow window
- Are the effects of "fallen angels" mitigated by the IC to "un-fallen angels"?

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix 000000

Fallen Angels: Results

	(1) Spread	(2) Amihud illiquidity	(3) IQR of traded prices	(4) Realized volatility
IC	-0.619***	-0.343***	-0.289***	-0.148
	(0.214)	(0.084)	(0.099)	(0.097)
Rating	-2.313***	-0.469***	-0.290*	-0.314*
	(0.363)	(0.142)	(0.167)	(0.165)
Coupon	0.518***	-0.103	0.082	-0.040
	(0.192)	(0.075)	(0.088)	(0.087)
Maturity	-0.086	-0.028	-0.028	0.0006
	(0.083)	(0.033)	(0.038)	(0.038)
Amount	0.390**	0.714***	0.590***	0.225***
	(0.177)	(0.069)	(0.081)	(0.076)
Volume	0.052	-0.770***	-0.558***	
	(0.121)	(0.048)	(0.056)	
FE	Time	Time	Time	Time
Observations	580	580	580	580
R-squared	0.643	0.515	0.447	0.454

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion ●○	Appendix 000000
Conclu	usion						

- We are developing a theory model, based on Merton (1987), to study what happens when
 - number of assets increases
 - number of investors increases
 - shape of the network changes
- Updating data until end of 2024

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion ●○	Appendix 000000
Conclu	usion						

- We are developing a theory model, based on Merton (1987), to study what happens when
 - number of assets increases
 - number of investors increases
 - shape of the network changes
- Updating data until end of 2024

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion ○●	Appendix 000000
Frame	Title						

I hope you like the paper

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix ●00000
Apper	ndix						

Notion of overlapping investors is different from just the number of investors in that bond

▲ Back

Sample Coverage

◀ Back

Introduction	Networks in Finance	Data	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix
							000000

Summary Statistics on Issuer-level Bonds

Variable	Obs	Mean	Std. Dev.	Min	Max
Outstanding issue amount (\$bil)	148,109	1.94	5.21	0.10	73.52
Remaining maturity (quarter)	145,407	33.23	25.04	4.00	117.00
Coupon rate	145,882	6.06	2.07	1.86	10.50
Spread (quarterly mean)	146,199	3.21	3.73	(4.79)	37.72
Spread (quarterly median)	146,199	3.03	2.90	0.20	12.97
Spread (last quarterly observation)	146,199	3.01	2.98	0.04	13.47
Rating	141,138	12.22	3.91	5.00	20.67
Trade volume (quarterly mean; \$bil)	148,109	125.79	279.31	0.00	7,594.96
Trade volume (quarterly median; \$bil)	148,109	39.98	90.35	0.00	2,319.44
Trade volume (last quarterly observation; \$bil)	148,109	85.41	222.61	0.00	10,365.76
Price Volatility	148,109	1.67	1.50	0.02	11.13
Illiquidity: Amihud (quarterly mean)	148,109	1.22E-06	3.06E-06	4.75E-13	0.0000435
Illiquidity: Amihud (quarterly median)	148,109	5.84E-07	1.69E-06	2.93E-13	0.0000216
Illiquidity: Amihud (last quarterly observation)	148,109	9.39E-07	2.48E-06	2.20E-12	0.0000132
Illiquidity: IQR (quarterly mean)	148,109	0.56	0.51	0.01	5.03
Illiquidity: IQR (quarterly median)	148,109	0.41	0.44	0.00	4.12
Illiquidity: IQR (last quarterly observation)	148,109	0.60	0.63	0.02	2.85

 Introduction
 Networks in Finance
 Data
 Stylized Facts
 Empirical Analyses
 Endogeneity
 Conclusion
 Appendix

 Ooo
 Ooo
 Soo
 Soo</

Introduction	Networks in Finance	Data 000	Stylized Facts	Empirical Analyses	Endogeneity	Conclusion	Appendix ○○○○●○
TRAC	F						

Security-level data on corporate bond spread, liquidity, volatility, and trading volume

- Spread
- Illiquidity measures:

• Amihud_{it} =
$$\frac{1}{D_{it}}\sum_{k=1}^{D_{it}}\frac{r_{ikt}}{Q_{ikt}}$$
,

 D_{it} total # trades on bond *i* at day *t*, r_{ikt} and Q_{ikt} return and traded volume of the *k*th transaction of bond *i* on day *t*

- IQR = difference between 75th and 25th percentiles of daily prices.
- Realized Volatility = quarterly standard deviation of traded prices of a bond.

- Networks in finance are mapped using three main techniques:
 - Correlation networks (see, Billio, Getmanski, Lo and Pellizzon, 2012; and Diebold and Yilmaz, 2014)
 - Physical networks (see, Brunetti, Harris, Mankad and Michailidis, 2019)
 - Common holdings networks (see, Caccioli, Farmer, Foti and Rockmore, 2015; and Greenwood, 2015)
 - New approach of mapping financial networks
 - Overlapping investors or investor similarity network
 - Mirrors notion of overlapping portfolios